Glomerular tubular balance is suppressed in adenosine type 1 receptor-deficient mice.

نویسندگان

  • Tracy D Bell
  • Zaiming Luo
  • William J Welch
چکیده

Glomerular tubular balance maintains a stable fractional solute and fluid reabsorption in the proximal tubule over a range of glomerular filtration rates. The mediators of this process are unknown. We tested the hypothesis that adenosine, produced in proximal tubule cells acting on adenosine type 1 receptors (A(1)-AR) promotes Na(+) and fluid uptake and mediates glomerular tubular balance. Absolute proximal fluid reabsorption (J(v)) was measured by in vivo microperfusion in A(1)-AR knockout and wild-type mice during perfusion of the closed proximal tubule at 2-10 nl/min. J(v) increased with perfusate flow from 2-4 nl/min in both strains, but the fractional increase was lower in A(1)-AR(-/-) mice (A(1)-AR(+/+): 114% vs. A(1)-AR(-/-): 38%; P < 0.001), suggesting reduced glomerular tubular balance (GTB). At higher perfusion rates, J(v) increased modestly in both strains, indicating less GTB at higher flow. The physiological effects of reduced GTB in A(1)-AR(-/-) mice were assessed from the response to an acute volume load (1 ml/2 min). Na(+) excretion and urine flow increased 76 and 73% more in A(1)-AR(-/-) mice than A(1)-AR(+/+) over the following 30 min, accompanied by a higher proximal tubule flow (A(1)-AR(-/-): 6.9 ± 0.9 vs. A(1)-AR(+/+): 5.2 ± 0.6 nl/min; P < 0.05). The expression of the sodium-hydrogen exchanger 3 and sodium phosphate cotransporter-2 were similar between strains. In conclusion, GTB is dependent on adenosine acting on type 1 receptors in the proximal tubule. This may contribute to acute changes in Na(+) and fluid reabsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abolished tubuloglomerular feedback and increased plasma renin in adenosine A1 receptor-deficient mice.

The hypothesis that adenosine acting on adenosine A1 receptors (A1R) regulates several renal functions and mediates tubuloglomerular feedback (TGF) was examined using A1R knockout mice. We anesthetized knockout, wild-type, and heterozygous mice and measured glomerular filtration rate, TGF response using the stop-flow pressure (P(sf)) technique, and plasma renin concentration. The A1R knockout m...

متن کامل

Modulation of adenosine receptor expression in the proximal tubule: a novel adaptive mechanism to regulate renal salt and water metabolism.

ABOUT 180 LITERS OF FILTRATE are produced by the human kidneys every day, with more than 99% of the filtered salt and water being subsequently reabsorbed along the nephron. In view of this high level of renal filtration, even slight alterations in the balance between filtration and reabsorption will result in potentially life-threatening derangements of electrolyte and volume balance. Consequen...

متن کامل

Tubuloglomerular feedback and renin secretion in NTPDase1/CD39-deficient mice.

Studies in mice with null mutations of adenosine 1 receptor or ecto-5'-nucleotidase genes suggest a critical role of adenosine and its precursor 5'-AMP in tubulovascular signaling. To assess whether the source of juxtaglomerular nucleotides can be traced back to ATP dephosphorylation, experiments were performed in mice with a deficiency in NTPDase1/CD39, an ecto-ATPase catalyzing the formation ...

متن کامل

Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis.

Monocyte chemoattractant protein-1 (MCP-1) is upregulated in renal parenchymal cells during kidney disease. To investigate whether MCP-1 promotes tubular and/or glomerular injury, we induced nephrotoxic serum nephritis (NSN) in MCP-1 genetically deficient mice. Mice were analyzed when tubules and glomeruli were severely damaged in the MCP-1-intact strain (day 7). MCP-1 transcripts increased fiv...

متن کامل

Hyperglycemia and hyperlipidemia act synergistically to induce renal disease in LDL receptor-deficient BALB mice.

Diabetic nephropathy is the leading cause of end-stage renal disease in Western countries, but only a portion of diabetic patients develop diabetic nephropathy. Dyslipidemia represents an important aspect of the metabolic imbalance in diabetic patients. In this study, we addressed the impact of combined hyperlipidemia and hyperglycemia on renal pathology. Kidneys from wild-type (WT) or LDL rece...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 299 5  شماره 

صفحات  -

تاریخ انتشار 2010